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Primes of the Form n!+ 1 and 2 - 3 - 5 *p + 1 

By J. P. Buhler, R. E. Crandall and M. A. Penk 

Abstract. All primes less than 1 O' of the form n!+ 1 or 2 . 3 5 p + 1 are determined. 
Results of Brillhart, Lehmer, and Selfridge are used together with a fast algorithm that applies 
to primality tests of integers N for which many factors of N + 1 are known. 

Let p# denote the product of all primes that are s p; for example 7# = 2 3 * 5 
7 = 210. In this paper we settle the question of the primality of all numbers of the 
form n!+ 1, n!-1, p# + 1, or p#- 1 that contain not more than one thousand 
digits. This means that all n < 450 and p < 2371 were considered (though the 
calculations were actually carried somewhat further as described below). Our work 
confirms the results on numbers of the form n! + 1 and p# + 1 in [2] (for n s 100 
andp s 307) and [5] (for n s 230 andp s 1031). 

The basic technique was to find possible primes by a pseudoprimality test and to 
then prove primality by a variant of the method described in [3]. The first section 
below contains the results and an outline of the basic methods. The proof of 
primality for numbers of the form p# ? 1 was greatly expedited by a fast divide-and- 
conquer algorithm; this is described in the second section. 

All computations were done on a PDP 11-70 equipped with a UNIX operating 
system; both the C language and assembly language were used. 

1. Let N > 1 be an odd integer. For the purposes of this paper, we will say that N 
is a pseudoprime if 

a(N- 1)/2--1 mod N 

for "several" integers a > 2, for which the Jacobi symbol (a) is equal to -1. It is 
easy to see that if N = n! ? 1 (respectively p# ? 1), then the Jacobi symbol (N) is 
equal to 1 for all a less than n (respectively p) so the search was started at the first 
prime larger than n (respectively p). 

If N is a pseudoprime, then it is virtually certain to be prime; if N fails the 
pseudoprimality test, then it is definitely composite. Because of the number of 
integers considered and their size it was necessary to write efficient computer 
routines (e.g., computing am mod N quickly) in assembly language. 

The technique used to show that a pseudoprime was actually a prime is a variant 
of a standard procedure based upon a partial factorization of N ? 1. To consider the 
most basic example, suppose that the factorization of N - 1 is known: 

N- 1 = Ipap 
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Then N is a prime if one can find a set S of primes that divide N - 1 such that 

l pap > N 1/2 

pES 

and for eachp E S there is an xp such that 

xN -l 1 mod N and x(N-l)/P ;Z1 mod N. 

An important refinement due to Brillhart, Lehmer, and Selfridge [3] adds some 
auxiliary conditions and allows one to replace N'/2 with N'/3. In addition, similar 
ideas involving the Lucas-Lehmer sequences can be used to prove primality if a 
(partial) factorization of N + 1 is known (or more generally if a factorization of 
Fm(N) is known where Fm is a cyclotomic polynomial; these seem to be of less 
practical importance if m > 2). 

For the numbers N =n! +? this gives a straightforward feasible method of 
proving primality (since the factorization of N - 1 is obvious). The time required 
depends on the size of the set S of primes p for which an xp must be determined; in 
this case S is the set of p < P, where P is the smallest prime such that 

JJ VP(" > N 1/3 
p?P 

where vp(n!) denotes the exact power of p dividing n!. It can be shown that if n is 
large, then P is of order n1/3. For the numbers given below only the primes p = 2, 3, 
5, and 7 were needed. 

Similar remarks apply to the case N = n! -1 since the Lucas-Lehmer sequences 
give a primality-proving algorithm when a factorization of N + 1 is known [3]. 

For numbers of the form N = p# ? 1 the number of primes in a suitable set S 
is considerably larger. The amount of time required by a straightforward implemen- 
tation of the above ideas would be on the order of several months total CPU time 
for the numbers listed below. However, an easy divide-and-conquer algorithm 
dramatically decreased the time required (to something on the order of a couple of 
days CPU time). This procedure is described in the next section. 

The results of these computations were as follows: 
(A) The number N = n! + 1 is prime for 

n = 1,2,3,11,27,37,41,73,77,116,154,320,340,399,427 
and is composite for all other n < 546. 

(B) The number N = n! -1 is prime for 

n = 3,4,6,7,12,14,30,32,33,38,94,166,324,379,469 
and is composite for all other n < 546. 

(C) The number N = p# + 1 is prime for the primes 

p = 2,3,5,7,11,31,379,1019,1021,2657 

and is composite for all other p < 3088. 
(D) The number N = p#- 1 is prime for 

p = 3,5,11,13,41,89,317,991,1873,2053 

and is composite for all other p < 2377. The number 2377# - 1 is a pseudoprime 
whose primality has not been verified. 
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Remarks. (1) Wilson's Theorem can be used to slightly shorten the search for 
primes of the form N = n! 1; if n + 1 is prime then n! + I is composite (for n > 2) 
and if n + 2 is prime then n! -1 is composite (for n > 3). 

(2) For a general integer N an algorithm due to Miller [41 shows that primality can 
be verified in a time bounded by a polynomial in log(N) if a generalized version of 
the Riemann hypothesis is true. A recent algorithm due to Adleman et al. [1] shows 
that primality can be verified in a time bounded by 

log( N ) c-log(log(log(N))) 

for an effective positive constant c; the method is probably feasible even for integers 
of the size considered here. As several people have observed, there are some 
philosophical problems connected with primality proofs-the probability of hard- 
ware "glitches" or undetected softward errors is surely far higher than the probabil- 
ity that a pseudoprime is not a prime. 

(3) It seems reasonable to conjecture that for each odd prime p there is a prime 
q < p such that the number 

2-3-5 .q p +1 p q+ 

is prime; similarly for p -q# -1. On heuristic grounds it seems that one would 
expect O(log(p)) such primes; we have found pseudoprimes of this form for all 
p < 10000. The only p that required a "large" q was p = 673; the smallest q for 
which p . q# + 1 was prime was q = 509. This value of p redeemed itself, however, 
in that 673 * 509# - 1 was also a pseudoprime. Thus 673 * 509# + 1 is a 215-digit 
twin prime pair (primality was verified). 

2. The basic task required in the primality proof of a number of the form 
N = P# + 1 is the computation of 

x(X- 1)/p mod N 

for roughly one-third of the primes p s P. The computation of a power Xq can be 
accomplished reasonably efficiently (by the usual method of repeated squarings 
based on the binary expansion of q). One could compute the numbers 

x(N- I)/p - X q#p q mod N 

either by multiplying the q together, using multiple-precision routines and exponenti- 
ating, or by repeatedly computing 

XI 
- 

Xql, X2=xq2, X= 23S- 

These algorithms fail to exploit the redundancy in the different exponents for the 
various p. An algorithm is given below that decreases the number of multiplications 
needed; the idea is an instance of the usual divide-and-conquer strategy found in 
many "fast" algorithms (e.g., standard versions of the fast Fourier transform). 

For numbers of the form N = P# - 1 the same ideas apply. Indeed, one can view 
the Lucas-Lehmer sequences as an implicit computation of a power Xq in a residue 
class ring of the ring of integers in a suitable quadratic field. Thus the algorithm 
below can be appropriately modified. 
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Suppose that x is an element of some group (written multiplicatively) and that we 
are given integers a,, a2,... ,an together with a routine exp(x, a) that computes Xa 
when a is one of the ai. We wish to compute the n quantities 

(1) x R ,#,aj < si <n 

by repeated calls to exp( ). 
If n = 2m, it is easy to devise a recursive scheme that requires m * 2' calls instead 

of the n(n - 1) = 22 - 2m required by the naive approach of iteratively computing 

xi+ I= exp(xj, aj). 
The routine POWER(r, s, x) below extends this idea to arbitrary positive integers 

n; the running time is 0(n * log(n)). The initial call should be POWER(1, n + 1, x); 
in general POWER(r, s, x) computes the numbers in (1) above for r < i < s. 

POWER(r, s, x) 
m = s -r; 
if m = 1, then output x and return; 
if m = 2, then output exp(x, ar), exp(x, ar+1) and return; 
m = m/2; 
y =x; 

fori=r,r?+ 1,. . . ,r + m-1, y = exp(y, a); 
POWER(r + m, s, y); 
y = x; 
fori = r+ m,r + m + l,...,s- 1, y = exp(y, ai); 
POWER(r, r + m, y); 
return; 

Remarks. (1) It is an easy exercise to prove the correctness of this algorithm 
inductively (first it does the left "half" and then the right "half") and to show that its 
running time is 0(n * log(n)). The running time of either of the naive approaches 
suggested above is at least 0(n2). The constant implicit in the 0( ) notation depends 
on the running time of the routine exp( ), which in turn depends on the time 
required to multiply in the group. 

(2) As usual the recursive scheme above can be converted to an iterative routine 
by introducing an appropriate stack. 

(3) This algorithm is useful in the primality verification of integers N, for which 
the known part of the factorization of N - 1 (or N + 1) contains many primes. 

Department of Mathematics 
Reed College 
Portland, Oregon 97202 

Department of Physics 
Reed College 
Portland, Oregon 97202 

2820 S. E. 20th 
Portland, Oregon 97202 



PRIMES OF THE FORM nf! +?1 AND 2 * 3 * 5 *.. p + 1 643 

1. L. ADLEMAN, C. POMERANCE & R. RUMELY, "On distinguishing prime numbers from composite 
numbers." (Preprint.) 

2. A. BORNING, "Some results for k!?+ and 2 3 5 p + 1," Math. Comp., v. 26, 1972, pp. 
567-570. 

3. J. BRILLHART, D. H. LEHMER & J. L. SELFRIDGE, "New primality criteria and factorizations of 
2m + 1," Math. Comp., v. 29, 1975, pp. 620-647. 

4. G. L. MILLER, "Riemann's hypothesis and tests for primality," J. Comput. Systems Sci., v. 13, 1976, 
pp. 300-317. 

5. M. TEMPLER, "On the primality of k!+ 1 and 2 * 3 * 5 * p* P 1," Math. Comp., v. 34, 1980, 
pp. 303-304. 


